A Comparative Analysis of Selected Fisher Linear Discriminant Based Algorithms in Human Faces
نویسندگان
چکیده
منابع مشابه
Fisher Linear Discriminant Analysis
Fisher Linear Discriminant Analysis (also called Linear Discriminant Analysis(LDA)) are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later c...
متن کاملLinear Discriminant Analysis Algorithms
We propose new algorithms for computing linear discriminants to perform data dimensionality reduction from R to R, with p < n. We propose alternatives to the classical Fisher’s Distance criterion, namely, we investigate new criterions based on the: Chernoff-Distance, J-Divergence and Kullback-Leibler Divergence. The optimization problems that emerge of using these alternative criteria are non-c...
متن کاملPrincipal Component Analysis and Fisher Linear Discriminant Analysis
Principal Components Analysis (PCA) is an appearance based technique used widely for the dimensionality reduction and it records a great performance in face recognition. PCA based approaches typically include two phases: training and classification (Draper et al 2003). In the training phase, an Eigen space is established from the training samples using PCA and the training face images are mappe...
متن کاملMultiview Fisher Discriminant Analysis
CCA can be seen as a multiview extension of PCA, in which information from two sources is used for learning by finding a subspace in which the two views are most correlated. However PCA, and by extension CCA, does not use label information. Fisher Discriminant Analysis uses label information to find informative projections, which can be more informative in supervised learning settings. We show ...
متن کاملRobust Fisher Discriminant Analysis
Fisher linear discriminant analysis (LDA) can be sensitive to the problem data. Robust Fisher LDA can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a classification problem and optimizing for the worst-case scenario under this model. The main contribution of this paper is show that with general convex uncertainty models on the proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Advances in Mathematics and Computer Science
سال: 2019
ISSN: 2456-9968
DOI: 10.9734/jamcs/2019/v33i430188